Wednesday, 15 April 2015

SISTEM PENCERNAAN


 SISTEM PENCERNAAN PADA HEWAN DAN MANUSIA


Struktur alat pencernaan berbeda-beda dalam berbagai jenis hewan, tergantung pada tinggi rendahnya tingkat organisasi sel hewan tersebut serta jenis makanannya. pada hewan invertebrata alat pencernaan makanan umumnya masih sederhana, dilakukan secara fagositosis dan secara intrasel, sedangkan pada hewan-hewan vertebrata sudah memiliki alat pencernaan yang sempurna yang dilakukan secara ekstrasel.

1. Sistem Pencernaan Pada Hewan Invertebrata

Sistem pencernaan pada hewan invertebrata umumnya dilakukan secara intrasel, seperti pada protozoa, porifera, dan Coelenterata.
Pencernaan dilakukan dalam alat khusus berupa vakuola makanan, sel koanosit dan rongga gastrovaskuler. Selanjutnya, pada cacing parasit seperti pada cacing pita, alat pencernaannya belum sempurna dan tidak memiliki mulut dan anus. pencernaan dilakukan dengan cara absorbs langsung melalui kulit.
a. Sistem Pencernaan Makanan Pada Cacing Tanah

cacing
yang dikeluarkan oleh getah pencernaan secara ekstrasel. Makanan cacing tanah berupa daun-daunan serta sampah organik yang sudah lapuk. Cacing tanah dapat mencerna senyawa organik tersebut menjadi molekul yang sederhana yang dapat diserap oleh tubuhnya. Sisa pencernaan makanan dikeluarkan melalui anus.
b. Sistem Pencernaan Pada Serangga

Sebagaimana pada cacing tanah, serangga memiliki sistem pencernaan makanan yang sudah sempurna, mulai dari mulut, kerongkongan, lambung, usus sampai anus.Pencernaan pada serangga dilakukan secara ekstrasel.

2. Sistem Pencernaan Pada Hewan vertebrata
Organ pencernaan pada hewan vertebrata meliputi saluran pencernaan (tractus digestivus) dan kelenjar pencernaan (glandula digestoria

a. Sistem Pencernaan Pada Ikan
Saluran pencernaan pada ikan dimulai dari rongga mulut (cavum oris). Di dalam rongga mulut terdapat gigi-gigi kecil yang berbentuk kerucut pada geraham bawah dan lidah pada dasar mulut yang tidak dapat digerakan serta banyak menghasilkan lendir, tetapi tidak menghasilkan ludah (enzim). Dari rongga mulut makanan masuk ke esophagus melalui faring yang terdapat di daerah sekitar insang.
Esofagus berbentuk kerucut, pendek, terdapat di belakang insang, dan bila tidak dilalui makanan lumennya menyempit. Dari kerongkongan makanan di dorong masuk ke lambung, lambung pada umum-nya membesar, tidak jelas batasnya dengan usus. Pada beberapa jenis ikan, terdapat tonjolan buntu untuk memperluas bidang penyerapan makanan.
Dari lambung, makanan masuk ke usus yang berupa pipa panjang berkelok-kelok dan sama besarnya. Usus bermuara pada anus.
Kelenjar pencernaan pada ikan, meliputi hati dan pankreas. Hati merupakan kelenjar yang berukuran besal, berwarna merah kecoklatan, terletak di bagian depan rongga badan dan mengelilingi usus, bentuknya tidak tegas, terbagi atas lobus kanan dan lobus kiri, serta bagian yang menuju ke arah punggung. Fungsi hati menghasilkan empedu yang disimpan dalam kantung empedu untuk membanfu proses pencernaan lemak. Kantung empedu berbentuk bulat, berwarna kehijauary terletak di sebelah kanan hati, dan salurannya bermuara pada lambung. Kantung empedu berfungsi untuk menyimpan empedu dan disalurkan ke usus bila diperlukan. Pankreas merupakan organ yang berukuran mikroskopik sehingga sukar dikenali, fungsi pankreas, antara lain menghasilkan enzim – enzim pencernaan dan hormon insulin.

b. Sistem Pencernaan Pada Amfibi

Sistem pencernaan makanan pada amfibi, hampir sama dengan ikan, meliputi saluran pencernaan dan kelenjar pencernaan. salah satu binatang
amphibi adalah katak. Makanan katak berupa hewan-hewan kecil (serangga). Secara berturut-turut saluran pencernaan pada katak meliputi:
1. rongga mulut: terdapat gigi berbentuk kerucut untuk memegang mangsa dan lidah untuk menangkap mangsa,
2. esofagus; berupa saluran pendek,
3. ventrikulus (lambung), berbentuk kantung yang bila terisi makanan menjadi lebar. Lambung katak dapat dibedakan menjadi 2, yaitu tempat masuknya esofagus dan lubang keluar menuju usus,
4. intestinum (usus): dapat dibedakan atas usus halus dan usus tebal. Usus halus meliputi: duodenum. jejenum, dan ileum, tetapi belum jelas batas-batasnya.
5. Usus tebal berakhir pada rektum dan menuju kloata, dan
6. kloaka: merupakan muara bersama antara saluran pencernaan makanan, saluran reproduksi, dan urine.
Kelenjar pencernaan pada amfibi, terdiri atas hati dan pankreas. Hati berwarna merah kecoklatan, terdiri atas lobus kanan yang terbagi lagi menjadi dua lobulus. Hati berfungsi mengeluarkan empedu yang disimpan dalam kantung empedu yang berwarna kehijauan. pankreas berwarna
Kekuningan, melekat diantara lambung dan usus dua belas jari (duadenum). pankreas berfungsi menghasilkan enzim dan hormon yang bermuara pada duodenum.
c. Sistem Pencernaan Pada Reptil    

Sebagaimana pada ikan dan amfibi, sistem pencernaan makanan pada reptil meliputi saluran pencernaan dan kelenjar pencernaan. Reptil umumnya karnivora (pemakan daging). Secara berturut-turut saluran pencernaan pada reptil meliputi:
1) rongga mulut: bagian rongga mulut disokong oleh rahang atas dan bawah, masing-masing memiliki deretan gigi yang berbentuk kerucut, gigi
menempel pada gusi dan sedikit melengkung ke arah rongga mulut. Pada rongga mulut juga terdapat lidah yang melekat pada tulang lidah dengan ujung bercabang dua,
2) esofagus (kerongkongan),
3) ventrikulus(lambung),
4) intestinum: terdiri atas usus halus dan usus tebal yang bermuara pada anus.
Kelenjar pencernaan pada reptil meliputi hati, kantung empedu, dan pankreas. Hati pada reptilia memiliki dua lobus (gelambirf dan berwarna
kemerahan. Kantung empedu terletak pada tepi sebelah kanan hati.
Pankreas berada di antara lambung dan duodenum, berbentuk pipih kekuning-kuningan.

d. Sistem Pencernaan Pada Burung

Organ pencernaan pada burung terbagi atas saluran pencernaan dan kelenjar pencernaan. Makanan burung bervariasi berupa biji-bijian, hewan kecil, dan buah-buahan.
Saluran pencernaan pada burung terdiri atas:
1) paruh: merupakan modifikasi dari gigi,
2) rongga mulut: terdiri atas rahang atas yang merupakan penghubung antara rongga mulut dan tanduk,
3) faring: berupa saluran pendek, esofagus: pada burung terdapat pelebaran pada bagian ini disebut tembolok, berperan sebagai tempat penyimpanan makanan yang dapat diisi dengan cepat,
4) lambung terdiri atas:
- Proventrikulus (lambung kelenjar): banyak menghasilkan enzim pencernaan, dinding ototnya tipis.
- Ventrikulus (lambung pengunyah/empedal): ototnya berdinding tebal. Pada burung pemakan biji-bijian terdapat kerikil dan pasir yang tertelan bersama makanan vang berguna untuk membantu pencernaan dan disebut sebagai ” hen’s teeth”,
6) intestinum: terdiri atas usus halus dan usus tebal yang bermuara pada kloaka.
Usus halus pada burung terdiri dari duodenum, jejunum dan ileum.
Kelenjar pencernaan burung meliputi: hati, kantung empedu, dan pankreas. Pada burung merpati tidak terdapat kantung empedu.

e. Sistem Pencernaan pada Hewan Mamah Biak (Ruminansia)

Hewan-hewan herbivora (pemakan rumput) seperti domba, sapi, kerbau disebut sebagai hewan memamah biak (ruminansia). Sistem pencernaan makanan pada hewan ini lebih panjang dan kompleks. Makanan hewan ini banyak mengandung selulosa yang sulit dicerna oleh hewan pada umumnya sehingga sistem pencernaannya berbeda dengan sistem pencernaan hewan lain.
Perbedaan sistem pencernaan makanan pada hewan ruminansia, tampak pada struktur gigi, yaitu terdapat geraham belakang (molar) yang besar, berfungsi untuk mengunyah rerumputan yang sulit dicerna. Di samping itu, pada hewan ruminansia terdapat modifikasi lambung yang dibedakan menjadi 4 bagian, yaitu: rumen (perut besar), retikulum (perut jala), omasum (perut kitab), dan abomasum (perut masam).
Dengan ukuran yang bervariasi sesuai dengan umur dan makanan alamiahnya. Kapasitas rumen 80%, retlkulum 5%, omasum 7-8%, dan abomasums 7-8′/o.Pembagian ini terlihat dari bentuk gentingan pada saat otot spingter berkontraksi. Abomasum merupakan lambung yang sesungguhnya pada hewan ruminansia.
Hewan herbivora, seperti kuda, kelinci, dan marmut tidak mempunyai struktur lambung seperti halnya pada sapi untuk fermentasi selulosa. Proses fermentasi atau pembusukan yang dilakukan oleh bakteri terjadi pada sekum yang banvak mengandung bakteri. proses fermentasi pada sekum tidak seefektif fermentasi yang terjadi dilambung. Akibatnya,
kotoran kuda, kelinci, dan marmut lebih kasar karena pencernaan selulosa hanya terjadi satu kali, yaitu pada sekum. Sedangkan pada sapi, proses pencernaan terjadi dua kali, yaitu pada lambung dan sekum keduanya dilakukan oleh bakteri dan protozoa tertentu.
Adanya bakteri selulotik pada lambung hewan memamah biak merupakan bentuk simbiosis mutualisme yang dapat menghasilkan vitamin B serta asam amino. Di samping itu, bakteri ini dapat ,menghasilkan gas metan (CH4), sehingga dapat dipakai dalam pembuatan biogas sebagai sumber energi altematif.
Sistem pencernaan makanan pada cacing tanah sudah sempurna. Cacing tanah memiliki alat-alat pencernaan mulai dari mulut, kerongkongan, lambung, usus, dan anus. Proses pencernaan dibantu oleh enzim – enzim

Alat Pencernaan Makanan Pada Manusia
Sistem pencernaan makanan pada manusia terdiri dari beberapa organ, antara lain adalah:

http://slemgaul.files.wordpress.com/2010/04/042010_1300_sistempence2.png?w=614

Mulut
Þ
Dilakukan pencernaan secara mekanik oleh gigi dan kimiawi oleh ludah yang dihasilkan Kelenjar Parotis, Submandibularis dan Sublingualis yang mengandung enzim Amilase (Ptyalin).
Lambung
Þ
Dilakukan secara mekanik dan kimiawi, Sekretin yaitu hormon yang merangsang pankreas untuk mengeluarkan sekretnya.
Renin yaitu enzim yang mampu menggumpalkan Kasein (sejenis protein) dalam susu.
Fungsi HCI Lambung :
1.
Merangsang keluamya sekretin
2.
Mengaktifkan Pepsinogen menjadi Pepsin untuk memecah protein.
3.    
Desinfektan
4.
Merangsang keluarnya hormon Kolesistokinin yang berfungsi merangsang empdu mengeluarkan getahnya.     
Usus
Þ
Di dalam Duodenum terdapat getah pankreas (bersifat basa) yang mengandung Steapsin (Lipase), Amilase dan Tripsinogen.
Enterokinase adalah suatu aktivator enzim. Dalam usus halus makanan diabsorbsi. Usus memperluas bidang penyerapan dengan melakukan jonjot usus (Villi).Dalam usus besar (Kolon), air
direabsorbsi serta sissa makanan dibusukkan menjadi feses selanjutnya dibuang melalui anus (Proses Defekasi).


METABOLISME SEL


MAKALAH
METABOLISME SEL

A.    Pengertian Umum
Metabolisme adalah segala proses reaksi kimia yang terjadi di dalam makhluk hidup, mulai makhluk hidup bersel satu yang sangat sederhana seperti bakteri, protozoa, jamur, tumbuhan, hewan; sampai mkhluk yang susunan tubuhnya kompleks seperti manuasia. Di dalam proses ini, makhluk hidup mendapat, mengubah dan memakai senyawa kimia dari sekitarnya untuk mempertahankan hidupnya.
Metabolisme meliputi proses sintesis (anabolisme) dan proses penguraian (katabolisme) senyawa atau komponen dalam sel hidup.. Semua reaksi metabolisme dikatalis oleh enzim. Hal lain yang penting dalam metabolisme adalah peranannya dalam penawaracunan atau detoksifikasi, yaitu mekanisme reaksi pengubahan zat yang beracun menjadi senyawa tak beracun yang dapat dikeluarkan dari tubuh.
Anabolisme dibedakan dengan katabolisme dalam beberapa hal:
·         Anabolisme merupakan proses sintesis molekul kimia kecil menjadi molekul kimia yang lebih besar, sedangkan katabolisme merupakan proses penguraian molekul besar menjadi molekul kecil
·         Anabolisme merupakan proses membutuhkan energi, sedangkan katabolisme melepaskan energi
·         Anabolisme merupakan reaksi reduksi, katabolisme merupakan reaksi oksidasi
·         Hasil akhir anabolisme adalah senyawa pemula untuk proses katabolisme.

B.     Fotosintesis
Pada hakekatnya, semua kehidupan di atas bumi ini tergantung langsung dari adanya proses asimilasi CO2  menjadi senyawa kimia organik dengan energi yang didapat dari sinar matahari. Dalam proses ini energi sinar matahari (energi foton) ditangkap dan diubah menjadi energi kimia dengan proses yang disebut fotosintesis. Proses ini berlangsung didalam sel pada tumbuhan tinggi, tumbuhan pakis, lumut, ganggang (ganggang hijau, biru, merah dan coklat) dan  berbagai jasad renik (protozoa golongan euglena, bakteri belerang ungu, dan bakteri belerang biru).
Energi matahari yang ditangkap pada proses fotosintesis merupakan lebih dari 90% sumber energi yang dipakai oleh manusia untuk pemanasan, cahaya dan tenaga. Gambar 1 berikut ini menunjukkan sebaran pemakaian energi matahari oleh bumi dan atmosfer.
30% dipantulkan kembali secara langsung ke ruangan angkasa

 
Sinar matahari









46% diserap oleh atmosfer dan diubah menjadi panas
 



23% diserap oleh bumi dan atmosfer dioakai untuk penguapan, angina dan sebagainya. Energi disimpan dalam bentuk air dan es
 


Kurang dari 1% ditangkap oleh klirofil yang terdapat dalam tumbuhan hijau daun dan berbagai jasad. Dipakai dalam proses fotosintesis, dimana energi matahari diubah menjadi energi kimia
 
 















Keseluruhan proses fotosintesis yang melibatkan berbagai macam enzim dituliskan dengan persamaan reksi:
6 CO + 6 HO                                       CHO + 6 O
Dalam bakteri berfotosintesis sebagai pengganti HO dipakai zat pereduksi yang lebih kuat seperti  H, HS, HR (R adalh gugus organik ). Persamaan reaksinya adalah :
2 CO+ 2 HR                                       2 CHO +  O + 2 R
Proses fotosintesis pada tumbuhan tinggi dibagi dalam dua tahap. Pada tahap pertama energi matahari ditangkap oleh pigmen penyerap cahaya dan diubah menjadi bentuk energi kimia, ATP dan senyawa reduksi, NADPH. Proses ini disebut  reaksi terang. Atom hydrogen dari molekul  HO dipakai untuk mereduksi NADP menjadi NADPH, dan O dilepaskan sebagai hasil samping reaksi fotosintesis. Reaksi ini juga dirangkaikan dengan reaksi endergonik pembentukan ATP dari ADP + Pi. Dengan demikian tahap reaksi terang dapat dituliskan dengan persamaan:
HO + NADP + ADP + Pi                                         O+  H + NADPH + ATP
                                      Energi matahari

Dalam hal ini pembentukan ATP dari ADP + Pi merupakan suatu mekanisme penyimpanan energi matahari yang diserap kemudian diubah menjadi bentuk energi kimia. Proses ini disebut fotofosforilasi.
Tahap kedua disebut tahap  reaksi gelap. Dalam hal ini senyawa kimia berenergi tinggi NADPH dan ATP yang dihasilkan dalam tahap pertama (reaksi gelap) dipakai untuk proses reaksi reduksi CO menjadi glukosa dengan persamaan:
CO + NADPH +  H + ATP                                 glukosa + NADP + ADP + Pi
1. Tahap Reaksi Terang Cahaya
Reaksi terang cahaya dalam proses pebebasan energi matahari oleh klorofil dimana dilepaskan molekul O, terdiri dari dua bagian. Bagian pertama disebut fotosistem I mempunyai kemampuan penyerapan energi matahari dengan panjang gelombang di sekitar 700nm dan tidak melibatkan proses  pelepasan O,. bagian kedua yang menyangkut penyerapan energi matahari pada panjang gelombang di sekitar 680 nm, disebut fotosistem II, melibatkan proses pembentukan O dan HO.
Fotosistem I merupakan suatu partikel yang disusun oleh sekitar 200 molekul klorofil-a, 50 klorofil-b, 50-200 pigmen karotenoid dan satu molekul penerima energi matahari yang disebut protein P700. Energi matahari (foton) yang ditangkap oleh pigmen pelengkap dipindahkan melelui beberapa molekul pigmen, disebut proses perpindahan eksiton, yang akhirnya diterima oleh P700. Akibatnya P700 melepaskan elektron yang berenergi tinggi. Proses penangkapan foton dan perpindahan eksiton di dalam fotosistem ini berlangsung dengan sangat cepat dan di pengaruhi oleh suhu. Dengan mekanisme yang sama, proses penangkapan foton dan pemindahan eksiton terjadi pula pada fotosistem II yaitu pada panjang gelombang 680.
Partikel fotosistem I dan II terdapat dalam membrane kantong tilakoid secara terpisah.
2. Pengangkutan Elektron dan Fotofosforilasi
Fotosistem I dan II merupakan komponen penyalur energi dalam rantai pengangkutan elektron fotosintesis secara kontinyu, dari molekul air sebagai donor elektron ke NADP sebagai aseptor elektron.
            Perbedaan antara pengangkutan elektron dalam fotosintesis dan pengangkutan elektron pernafasan adalah:
1.      Pada yang pertama, elektron mengalir dari molekol HO ke NADP, sedangkan pada yang kedua arah aliran elektron adalah dari NADP ke HO
2.      Pada yang pertama terdapat dua system pigmen, fotosistem I dan II yang berperan sebagai pendorong untuk mengalirkan elektron dengan bantuan energi matahari dari HO ke NADP
3.      Pada yang pertama dihasilkan O sedangkan pada yang ke dua memerlukan O
Persamaannya ialah kedua rantai pengangkutan elektron tersebut menghasilkan energi ATP dan melibatkan sederetan molekul pembawa elektron.
Pengangkutan elektron dalam fotosintesis terdiri dari tiga bagian yaitu bagian pendek dari HO ke fotosistem II, bagian dari fotosistem II ke fotosistem
I yang dirangkaikan dengan pembentukan ATP dari ADP + Pi, dan bagian dari fotosistem I ke NADPyang menghasilkan NADPH seperti pada gambar 3.

Penyerapan foton oleh molekul pigmen fotosintesis I menyebabkan tereksitasinya molekul tersebut, menghasilkan eksiton berenergi tinggi yang kemudian ditangkap oleh molekul P 700. Akibatnya P 700 melepaskan elektron dan memindahkannya ke molekul penerima elektron pertama P 430. selanjutnya elektron dialirkan melalui deretan molekul pembawa elektron sampai ke  NADP menyebabkan tereduksinya NADP menjadi NADPH. Dalam proses ini diperlukan dua elektron untuk mereduksi satu molekul NADP. Lepasnya satu elektron dari P700 mengakibatkan berubahnya molekul ini menjadi bentuk teroksidasinya, P700 yang kekurangan satu elektron. Dengan kata lain terjadinya satu lubang elektron pada P700. Untuk mengisi lubang ini, satu elektron dialirkan melalui sederetan molekul pembawa elektron, dari molekul P680 dalam fotosistem II. Dalam hal ini pengaliran elektron hanya terjadi setelah terlebih dulu terjadi penyinaran terhadap fotosistem II, yaitu tereksitasinya P680 yang segera melepaskan elektron ke molekul penerima elektron pertamanya, C550. Ini mengakibatkan teroksidasinya bentuk P680. Kekurangan elektron pada P680 dipenuhi dari reaksi oksidasi oksidasi molekul HO menjadi O. Proses pengangkutan elektron dari HO ke NADP yang didorong oleh energi matahari ini disebut pengangkutan non siklik (tak mendaur dalam elektron fotosintesis). Dalam hal ini satu molekul HO melepaskan dua elektron yang diperlukan untuk mereduksi satu molekul NADP menajdi NADPH, dirangkaikan dengan pembentuka ATP dari ADP + pi, disebut proses fotofosforilasi.

Energi pada proses pengangkutan elektron dalam fotosintesis dari HO ke NADP. Elektron yang telah tereksitasi di fotosistem II selanjutnya dialirkan ke fotosistem I melalui molekul penerima elektron; sitokrom 559 (sitokrom b= cyt. b), plastoquinon (PQ), sitokrom 553 (sitokrom f = cyt.f), plastosianin(PC) dan molekul P700di fotosistem I. pengankutan elektron dari PQ ke cyt.f dirangkaikan dengan pembentukan ATP dari ADP+Pi. Sementara itu elektron yang telah tereksitasi difotosistem I, dialirkan berturut-turut ke molekul substrat feredoksin, feredoksin, feredoksin reduktase, dan akhirnya ke NADP dimana molekul ini tereduksi menjadi NADPH.
Dalam keadaan tertentu, elektron yang tereksitasi di fotosistem I tidak dialirkan ke NADP, tetapi kembali ke P700 melalui molekul penerima elektron lainnya, sitokrom 564 (cyt.b) yang selanjutnya melalui cyt. b dialirkan ke P700 di fotosistem I. mekanisme pengangkutan elektron ini disebut pengangkutan elektron mendaur dalam fotosintesis, sedangkan pengangkutan elektron dari HO ke NADP melalui fotosistem I dan fotosistem II, disebut pengangkutan elektron tak mendaur dalam fotosintesis.

3. Tahap Reaksi Gelap Cahaya: Daur Calvin
            Dalam tahap reaksi gelap cahaya ini, energi yang dihasilkan (NADPH dan ATP) dalam tahap reaksi terang cahaya selanjutnya dipakai dalam reaksi sintesis glukosa dari CO, untuk kemudian dipakai dalam reaksi pembentukan senyawa pati, selulosa, dan polisakarida lainnya sebagai hasil akhir proses fotosintesis dalam tumbuhan.
            Jalur metabolisme reaksi pembentukan glukosa dari CO ini merupakan suatu jalur metabolisme mendaur yang pertama kali diusulkan oleh M.Calvin, disebut daur Calvin. Dalam tahap reaksi pertamanya 6 molekul CO dari udara bereaksi dengan 6 molekul ribulosa 1,5-difosfat, dikatalis oleh enzim ribulosa difosfat karboksilase, menghasilkan 2 molekul 3-fosfogliserat melalui pembentukan senyawa antara, 2-karboksi 3-ketoribitol 1,5-difosfat.


            Pada tahap reaksi kedua, 12 molekul 3-fosfogliserat diubah menjadi 12 molekul gliseral dehida 3-fosfat melalui pembentukan 1,3-difosfogliserat, dikatalis oleh enzim fosfogliserat kinase dan gliseraldehidafosfat dehidrogenase, serta menggunakan 12 ATP dan 12 NADPH.          

Tahap reaksi ketiga , 12 gliseraldehida 3-P diubah menjadi 3 molekul fruktosa 6-P dengan melalui pembentukan senyawa dihidroksi aseton fosfat dan fruktosa 1,6 difosfat.
            ringkasan keseluruhan jalur metabolisme daur Calvin. Dalam daur ini yang sangat menonjol adalah tahap reaksi penambatan CO, reaksi yang menggunakan energi NADPH dan ATP  dan reaksi yang menghasilkan glukosa sebagai hasil akhir.
Dalam reaksi penambatan CO2, ternyata dibutuhkan tiga molekul ATP dan dua molekul NADPH untukm mereduksi satu molekul CO. Energi matahari yang ditangkap oleh foto sistem I dan foto sistem II dalam fase terang cahaya diubah menjadi energi kimia NADPH dan ATP. Kedua macam energi ini kemudian dipakai untuk menjalankan daur Calvin dengan mendorong tahap reaksi pembentukan gliseraldehida 3-fosfat dan ribosa 1,5-difosfat serta pelepasan dlukosa dari daur.
C.    Metabolisme Karbohidrat
Pada metabolisme karbohidrat pada manusia dan hewan secara umum, setelah melalui dinding usus halus sebagian besar monosakarida dibawa oleh aliran darah ke hati. Di dalam hati, monosakarida mengalami sintesis menghasilkan glikogen, oksidasi menjadi CO dan HO atau dilepaskan untuk dibawa dengan aliran darah kebagian tubuh yang memerlukannya






Sebagian lain monosakarida dibawa langsung ke sel jaringan organ tertentu dan mengalami proses metabolisme lebih lanjut. Karena pengaruh berbagai faktor dan hormon insulinyang dihasilkan oleh kelenjar pankreas, maka hati dapat mengatur kadar glukosa dalam darah. Bila kadar glkosa dalam darah meningkat sebagai akibat naiknya proses pencernaan dan penyerapan karbohidrat, sintesis glikogen dari glukosa oleh hati akan naik. Sebaliknya bila kadar glukosa menurun, misalnya akibat latihan olahraga, glikogern diuraikan menjadi glukosa  yang selanjutnya mengalami proses katabolisme menghasilkan energi (dalam bentuk energi kimia, ATP) yang dibutuhkan oleh kegiatan olahraga tersebut
Kadar glukosa dalam darah merupakan faktor yang sangat penting untuk kelancaran kerja tubuh. Kadar normal glukosa dalam darah adalah 70-90 mg/100 ml. Keadaan dimana kadar glukosa berada di bawah 70mg/100ml disebut hipoglisemia, sedangkan diatas 90mg/100ml disebut hiperglisemia. Hipoglisemia yang ekstrem dapat menghasilkan suatu rentetan reaksi goncangan yang ditunjukkan oleh gejala gemetarnya otot, perasaan lemah badan dan pucatnya warna kulit. Hipoglisemia yang serius dapat menyebabkan kehilangan kesadaran sebagai akibat kekurangan glukosa dalam otak yang diperlukan untuk pembentukan energi, sehingga pada akhirnya dapat menyebabkan kematian.
Kadar glukosa yang tinggi merangsang pembentukan glikogen dari glukosa, sintesis asam lemak dan kolesterol dari glukosa. Kadar glukosa antara 140 dan 170 mg/100 ml disebut kadar ambang ginjal, karena pada kadar ini glukosa diekskresi dalam kemih melalui ginjal. Gejala ini disebut glukosuria  yaitu keadaan ketidakmampuan ginjal untuk menyerap kembali glukosa yang telah mengalami filtrasi melalui sel tubuh.
Kadar glukosa dalam darah diatur oleh beberapa hormon. Insulin  dihasilkan oleh kelenjar pankreas menurunkan kadar glukosa dengan menaikkan pembentukan glikogen dari glukosa. Adrenalin (epineprin) yang juga dihasilkan oleh pankreas, dan glukagon berperan dalam menaikkan kadar glukosa dalam darah. Semua faktor ini bekerjasama secara terkoordinasi mempertahankan kadar glukosa tetap normal untuk menunjang berlangsungnya proses metabolisme secara optimum.
1. Biosintesis dan Perombakan Glikogen
 Glukosa 6-fosfat dan glukosa 1-fosfat merupakan senyawa antara dalam proses glikogenesis atau pembentukan glikogen dari glukosa. Proses kebalikannya, penguraian glikogen menjadi glukosa yang disebut glikogenolisis juga melibatkan terjadinya kedua senyawa antara tersebut tetapi dengan jalur yang berbeda seperti digambarkan pada Gambar 6.  Senyawa antara UDP-glukosa (Glukosa Uridin Difosfat) terjadi pada jalur pembentukan tetapi tidak pada jalur penguraian glikogen. Demikian pula enzim yang berperan dalam kedua jalur tersebut juga berbeda.
 Jalan reaksi glikogenesis dan glikogenolisis. UTP = Uridin Tripospat, ADP = Adenosin Dipospat, (P) = gugus pospat anorganik. UDP-glukosa = Uridin dipospat glukosa. Enzim: E= fosforilase, E= fosfoglukomutase, E= fosfatase, E= glukokinase, E = pirofosforilase, E= glikogen sintetase. PPi = asam piropospat.            

2. Glikogenesis
Gugus fosfat dan energi yang diperlukan dalam reaksi pembentukan glukosa 6-fosfat dsari glukosa diberikan oleh ATP yang berperan sebagai senyawa kimia berenergi tinggi. Sedang enzim yang mengkatalisnya adalah glukokinase. Selanjutnya, dengan fosfoglukomutase, glukosa 6-fosfat mengalami reaksi isomerasi menjadi glukosa 1-fosfat.


                 
                                      .

Glukosa 1-fosfat bereaksi dengan uridin tri fosfat (UTP) dikatalis oleh glukosa 1-fosfat uridil transferase menghasilkan uridin difosfat glukosa (UDP-glukosa)dan pirofosfat (PPi).
Mekanisme reaksi glikogenesis juga merupakan jalur metabolisme umum untuk biosintesis disakarida dan polisakarida. Dalam berbagai tumbuhan seperti tanaman tebu, disakarida sukrosa dihasilkan dari glukosa dan fruktosa melalui mekanisme biosintesis tersebut. Dalam hal ini UDP-glukosa abereaksi dengan fruktosa 6-fosfat, dikatalis oleh sukrosa fosfat sintase, membentuk sukrosa 6-fosfat yang kemudian dengan enzim sukrosa fosfatase dihidrolisis menjadi sukrosa.
3. Glikogenolisis
Tahap pertama penguraian glikogen adalah pembentukan glukosa 1-fosfat. Berbeda dengan reaksi pembentukan glikogen, reaksi ini tidak melibatkan UDP-glukosa, dan enzimnya adalah glikogen fosforilase. Selanjutnya glukosa 1-fosfat diubah menjadi glukosa 6-fosfat oleh enzim yang sama seperti pada reaksi kebalikannya (glikogenesis) yaitu fosfoglukomutase.

Tahap reaksi berikutnya adalah pembentukan glukosa dari glukosa 6-fosfat. Berbeda dengan reaksi kebalikannya dengan glukokinase, dalam reaksi ini enzim lain, glukosa 6-fosfatase, melepaskan gugus fosfat sehigga terbentuk glukosa. Reaksi ini tidak menghasilkan ATP dari ADP dan fosfat.
Glukosa 6-fosfat                                                 glukosa + asam fosfat

4. Glikololisis:
Proses penguraian karbohidrat menjadi piruvat. Juga disebut jalur metabolisme Emden-Meyergoff dan sering diartikan pula sebagai penguraian glukosa menjadi piruvat. Proses ini terjadi dalam sitoplasma. Glikolisis anaerob: proses penguraian karbohidrat menjadi laktat melalui piruvat tanpa melibatkan oksigen.
            Proses penguraian glukosa menjadi CO dan air seperti juga semua proses oksidasi. Energi yang dihasilkan dari proses penguraian glukosa ini adalah 690 kilo-kalori (kkal).
glukosa + 6 O                          6 CO+ 6 HO + 690 kkal
            Jumlah energi ini sebenarnya jauh lebih besar daripada jumlah energi yang dapat disimpan secara sangkil dalam bentuk energi kimia ATP yang dihasilkan dalam proses penguraian tersebut.



Dengan adanya oksigen (dalam suasana aerob), glikolisis menghasilkan piruvat, atau tanpa oksigen (glikolisis anaerob) menghasilkan laktat. Glikolisis menghasilkan dua senyawa karbohidrat beratom tiga dari satu senyawa beratom enam; pada proses ini terjadi sintesis ATP dari ADP + Pi. Gambar  13 me-nunjukkan proses glikolisis secara keselurhan.


Seperti halnya reaksi dengan glukokinase (reaksi tahap pertama) dan fosfofruktokinase (reaksi tahap ketiga), reaksi dengan piruvat kinase ini juga merupakan reaksi yang tidak reversibel, sehingga merupakan salah satu tahap reaksi pendorong glikolisis.
Reaksi kebalikannya yang merupakan reaksi tahap pertama glukoneogenesis merupakan suatu reaksi yang kompleksyang melibatkan beberapa enzim dan organel sel yaitu mitokondrion, yang diperlukan untuk terlebih dahulu mengubah piruvat menjadi malat sebelum terbentuknya fosfoenol piruvat. Pada jalan metabolisme in, piruvat diangkut kedalam mitokondria dengan cara pengangkutan aktif melalui membran mitokondrion. Selanjutnya piruvat bereaksi dengan CO menghasilkan asam oksalasetat. Reaksi ini dikatalis oleh piruvat karboksilase (enzim yang terdapat pada mitokondria tetapi tidak terdapat pada sitoplasma), dan memerlukan koenzim biotin dan kofaktor ion maggan, serta ATP sebagai sumber energi. Dalam mekanisme reaksinya, biotin (sebagai gugus biotinil) yang terikat pada gugus lisina dari piruvat karboksilase, menarik COatau HCO dalam mitokondrion kemudian mengkondensasikan dengan asam piruvat ( dengan bantuan ATP dan Mn) menghasilkan asam oksalasetat. Asam oksalasetat kemudian direduksi menjadi asam malat oleh NADH dan dikatalis malat dehidrogenase. Asam malat diangkut keluar mitokondria dengan cara pengangkutan aktif melalui membran mitokondrion yang kemudian dioksidasi kembali menjadi asam oksalasetat oleh NAD  dan malat dehidrogenase yang terdapat dalam sitoplasma. Akhirnya oksalasetat dikarboksilasi dengan CO dan difosforilasi dengan gugus fosfat dari GTP (guanosin trifosfat, sebagai sumber energi yang khas disamping ATP) dan dikatalis oleh fosfoenolpiruvat karboksikinase menghasilkan fosfoenolpiruvat. Dengan demikian untuk mengubah satu molekul piruvat menjadi fosfoenolpiruvat diperlukan energi sebanyak satu ATP plus satu GTP dan melibatkan paling sedikit empat macam enzim. Dibandingkan dengan reaksi kebalikannya, yaitu perubahan sat molekul fosfoenol piruvat menjadi piruvat, dihasilkan satu ATP dan melibatkan satu macam enzim saja.
Dilihat dari keseluruhan, glikolisis terbagi menjadi dua bagian. Bagian pertama meliputi tahap reaksi enzim yang memerlukan ATP, yaitu tahap reaksi dari glukosa sampai dengan pembentukan fruktosa 6-fosfat., yang menggunaka dua molekul ATP tiap satu molekul glukosa yang dioksidasi. Bagian kedua meliputi tahap reaksi yang menghasilkan energi (ATP dan NADH) yaitu dari gliseraldehide 3-fosfat sampai dengan piruvat. Dari bagian kedua ini dihasilkan dua molekul NADH dan empat molekul ATP untuk tiap molekul glukosa yang dioksidasi (atau untuk dua molekul gliseraldehid 3-fosfat yang dioksidasi). Karena satu molekul NADH yang masuk rantai pengangkutan elektron dapat menghasilkan tiga molekul ATP, maka tahap reaksi bagian kedua ini menghasilkan 10 molekul ATP. Dengan demikian, keseluruhan proses glikolisis menghasilkan 10-2 = 8 molekul ATP untuk tiap molekul glukosa yang dioksidasi.
Sebaliknya, untuk mensintesis satu molekul glukosa dari dua molekul piruvat dalam proses glukoneogenesis diperlukan energi dari 4 molekul ATP, 2 GTP (sebanding dengan 2 ATP) dan 2 NADH (= 6 ATP) atau sebanding dengan 12 molekul ATP.

5. Glikolisis Anaerob
Dalam keadaan tanpa oksigen respirasi terhenti karena proses pengangkutan elektron yang dirangkaikan dengan fosforilasi bersifat oksidasi melalui rantai pernafasan yang menggunakan molekul oksigen sebagai penerima elektron terakhir, tidak berjalan. Akibatnya jalan metabolisme lingkar asam trikarboksilat (daur Krebs) akan terhenti pula sehingga piruvat tidak lagi masuk kedalam daur Krebs melainkan dialihkan pemakaiannya yaitu diubah menjadi asam laktat oleh laktat dehidrogenase dengan NADH sebagai sumber energinya.


Dalam hal ini, dua molekul NADH yang dihasilkan oleh reaksi tahap kelima dalam glikolisis (reaksi dengan gliseraldehida 3-fosfat dehodrogenase) tidak dipakai untuk membentuk ATP melainkan digunakan untuk reaksi reduksi 2 molekulasam piruvat menjadi asam laktat. Jadi paad glikolisis anaerob energi yang dihasilkannya hanya 2 molekul ATP saja (Gambar 17). Jumlah ini jauh lebih kecil jika dibandingkan dengan energi yang dihasilkan oleh glikolisis aerob yaitu 8 ATP.


 6. Fermentasi Alkohol
            Dalam beberapa jasad renik seperti ragi, glukosa dioksidasi menghasilkan etanol dan COdalam proses yang disebut fermentasi alkohol. Jalur metabolisme proses ini sama dengan glikolisis sampai dengan terbentuknya piruvat. Dua tahap reaksi enzim berikutnya adalah reaksi perubahan asam piruvat menjadi asetaldehida, dan reaksi reduksi asetaldehida menjadi alkohol. Dalam reaksi yang pertama  piruvat didekarboksilasi diubah menjadi asetaldehida dan CO oleh piruvat dekarboksilase, suatu enzim yang tidak terdapat pada hewan.


Reaksi dekarboksilase ini merupakan reaksi yang tak reversibel, membutuhkan ion Mg dan koenzim tiamin pirofosfat. Reaksi berlangsung melalui beberapa senyawa antara yang teriakt secara kovalen pada koenzim.
Dalam reaksi yang terakhir dibawah ini, asetaldehid direduksi oleh NADH dengan enzim alkohol dehodrogenase, menghasilkan etanol. Dengan demikian etanol dan CO merupakan hasil akhir fermentasi alkohol dan jumlah energi yang dihasilkannya sama dengan glikolisis anaerob. Yaitu 2 ATP.


7. Perubahan Piruvat Menjadi Asetilkoezim – A
            Reaksi oksidasi piruvat hasil glikolisis menjadi asetil koenzim-A, merupakan tahap reaksi penghubung yang penting antara glikolisis dengan jalur metabolisme lingkar asam trikarboksilat (daur Krebs). Reaksi yang diaktalisis oleh kompleks piruvat dehidrogenase dalam matriks mitokondria melibatkan tiga macam enzim (piruvat dehidrogenase, dihidrolipoil transasetilase, dan dihidrolipoil dehidrogenase), lima macam koenzim (tiaminpirofosfat, asam lipoat, koenzim-A, flavin adenin dinukleotida, dan nikotinamid adenin dinukleotida) dan berlangsung dalam lima tahap reaksi. Keseluruhan reaksi dekarboksilasi ini irreversibel, dengan ∆ G = - 80 kkal per mol.
            Piruvat + NAD + koenzim A                         asetil ko-A + NADh +  CO
            Reaksi ini merupakan jalan masuk utama karbohidrat kedalam daur Krebs. Tahap reaksi pertama dikatalis oleh piruvat dehidrogenase yang menggunakan tiamin pirofosfat sebagai koenzimnya. Dekarboksilasi piruvat menghasilkan senyawa α-hidroksietil yang terkait pada gugus cincin tiazol dari tiamin pirofosfat. Pada tahap reaksi kedua α-hidroksietil didehidrogenase menjadi asetil yang kemudian dipindahkan dari tiamin pirofosfat ke atom S dari koenzim yang berikutnya, yaitu asam lipoat, yang terikat pada enzim dihidrolipoil transasetilase. Dalam hal ini gugus disulfida dari asam lipoat diubah menjadi bentuk reduksinya, gugus sulfhidril. Pada tahap reaksi ketiga, gugus asetil dipindahkan dengan perantara enzim dari gugus lipoil pada asam dihidrolipoat, kegugus tiol (sulfhidril pada koenzim-A). Kemudian asetil ko-A dibebaskan dari sistem enzim kompleks piruvat dehidrogenase. Pada tahap reaksi keempat gugus tiol pada gugus lipoil yang terikat pada dihidrolipoil transasetilase dioksidasi kembali menjadi bentuk disulfidanya dengan enzim dihidrolipoil dehidrogenase yang berikatan dengan FAD (flavin adenin dinukleotida). Akhirnya (tahap reaksi kelima) FADH (bentuk reduksi dari FAD) yang tetap terikat pada enzim, dioksidasi kembali oleh NAD (nikotinamid adenin dinukleotida) manjadi FAD, sedangkan NAD berubah menjadi NADH (bentuk reduksi dari NAD).

8. Pengaturan Dekarboksilasi Piruvat
            Telah diketahui bahwa di samping mengandung tiga macam enzim tersebut di ats, kompleks enzim piruvat dehidrogenase juga mempunyai dua macam enzim yang terdapat dalam sub unit pengaturnya, yaitu piruvat dehidrogenase kinase dan piruvat dehidrogenase fosfatase. Kedua enzim ini berperan dalam mengatur laju reaksi dekarboksilasi piruvat dengan cara mengendalikan kegiatan subunit katalitiknya pada kompleks enzim piruvat dehidrogenase itu sendiri.


            Bila jumlah ATP yang dihasilkan oleh daur krebas dan fosforilasi bersifat oksidasi terlalu banyak, keseimbangan reaksi akan berjalan kebawah (laju reaksi fosforilasi sub unit katalitik kompleks piruvat dehidrogenase bertambah besar) sehingga kegiatan kompleks piruvat dehidrogenase terhambat dan menjadi tidak aktif. Hal ini menyebabkan terhentinya reaksi pembentukan asetil ko-A dari piruvat. Akibatnya, jumlah asetil ko-A yang diperlukan untuk daur Krebs akan berkurang sehingga laju reaksi daur Krebs terhambat dan produksi ATP terhenti. Sebaliknya jika jumlah ADP banyak (ATP sedikit), keseimbangan reaaksi didorang ke atas (laju reaksi defosforilasi kompleks piruvat dehidrogenase bertambah besar) sehingga kegiatan kompleks piruvat dehidrogenase bertambah. Akibatnya, reaksi dekarboksilasi piruvat menjadi asetil ko-A naik, sehingga laju reaksi daur Krebs bertambah besar dan produksi ATP bertambah banyak.

10. Jalur Metabolisme Daur Asam Trikarboksilat 
            Jalur metabolisme daur asam trikarboksilat (asam sitrat) pertama diketemukan oleh Krebs (1937). Oleh karena itu, jalur ini disebut pula daur Krebs. Jalur daur ini merupakan ajlur metabolisme yang utama dari berbagai senyawa hasil metabolisme, yaitu hasil katabolisme karbohidrat, lemak, dan protein.

            Asetil ko-A (sebagai hasil katabolisme lemak dan karbohidrat), oksalasetat, fumarat, dan α-ketoglutarat (sebagaihasil katabolismeasam amino dan protein), masuk kedalam daur Krebs untuk selanjutnya dioksidasi melalui beberapa tahap reaksi yang kompleks menjadi CO, HOdan energi ATP. Kegiatan daur asam tri karboksilat terdapat dalam sel hewan, tumbuhan, dan jasad renik yang aerob dan merupakan metabolisme penghasil energi yang utama. Jasad yang anaerob tidak menggunakan metabolisme daur ini sebagai penghasil energinya.

Daur Krebs merupakan bagian rangkaian proses pernafasan yang panjang dan kompleks, yaitu oksidasi glukosa menjadi COdan HO serta produksi ATP. Proses pernafasan terdiri dari 4 tahap utama: 1) glikolisis (oksidasi glukosa menjadi piruvat), 2) konversi piruvat ke asetil ko-A, 3) daur Krebs dan 4) proses pengangkutan elektron melalui rantai pernafasan yang dirangkaikan degan sintesis ATP dari ADP = Pi melalui proses fosforilasi bersifat oksidasi.
Didalam sel eukariota, metabolisme asam trikarboksilat berlangsung didalam mitokondrion. Sebagian enzim dalam metabolisme ini terdapat di dalam cairan matriks dan sebagian lagi terikat pada bagian dalam membran mitokondrion.

11. Energi yang Dihasilkan oleh Glikolisis dan DAur Asam Trikarboksilat
Dari pembahasan tentang daur asam trikarboksilat sebelumnya, ternyata terdapat dua tahap reaksi yang masing-masing menghasilkan satu molekul CO; tiga reaksi menghasilkan NADH; satu reaksi menghasilkan GTP; satu reaksi menghasilkan FADH.
Satu molekul GTP dapat menghasilkan satu molekul ATP. Dalam proses pengangkutan elektron melalui rantai pernafasan yang dikaitkan dengan fosforilasi bersifat oksidasi, satu molekul NADH dan satu FADH masing-masing menghasilkan 3 dan 2 molekul ATP. Dengan demikian oksidasi satu molekul asetil ko-A dalam daur Krebs menghasilkan (3 x 3 + 2 x 1 + 1) ATP = 12 ATP.

            Bila proses oksidasi itu dimulai dari piruvat, jumlah molekul ATP yang dihasilkan adalah 12 + 3 = 15untuk setiap molekul piruvat (pembentukan satu molekul asetil ko-A dari satu molekul piruvat menghasilkan satu molekul NADH).
            Oksidasi satu molekul glukosa melalui glikolisis menjadi dua molekul piruvat, menghasilak 8 ATP. Dengan demikian oksidasi sempurna satu molekul glukosa menjadi CO +  HO menghasilkan 2 x 15 + 8 = 38 ATP..

D.          Metabolisme Protein
Nama protein pertama kali diusulkan oleh ahli kimia Swedia, Berzelius.  Protein berasal dari bahasa Yunani, protios, yang berarti bahan penyokong yang pertama. 
            Protein merupakan komponen utama dalam semua sel hidup. Fungsi utamanya sebagai unsur pembentuk styruktur sel, misalnya dalam rambut, wol, kolagen, jaringan penghubung, membran sel dan lain-lain. Selain itu dapat pula berfungsi sebagai protein yang aktif seperti enzim yang berperan sebagai katalisator segala proses biokimia dalam sel. Protein aktif selain enzim yaitu hormon, hemoglobin, protein yang terikat pada gen, toksin, anti bodi atau anti gen dan lain-lain.
Protein adalah rangkaian atau polimer dari sejumlah asam amino. Asam amino adalah molekul organik kecil yang pada umumnya terbuat dari karbon, hidrogen, oksigen, dan nitrogen. Protein dibuat dari suatu pool yang terdiri dari 20 asam amino yang berbeda. Ratusan atau ribuan asam amino dirangkai dengan suatu urutan tertentu untuk membentuk rantai asam amino.
Fungsi protein dimungkinkan karena struktur tiga dimensinya yang unik. Dengan strukturnya yang unik suatu molekul protein dapat melakukan interaksi dengan molekul lainnya sehinnga dapat berfungsi sebagai molekul pengatur dalam suatu ekspresi gen atau transmisi genetik menjadi fenotipik. Jadi, suatu protein sangat tergantung pada kemampuannya untuk mengikat atau berpasangan dengan molekul lainnya untuk menjalankan fungsinya. Kemampuan tersebut ditentukan oleh struktur tiga dimensinya.
Bila asam amino dirakit menjadi suatu rantai protein, rantai tersebut segera melipat membentuk suatu struktur yang secara energetik paling relaks atau yang bentuknya paling stabil. Bentuk yang secara energetik paling stabil ditentukan oleh interaksi tiap-tiap asam amino yang membentuk protein tersebut. Oleh karena itu, jenis asam amino dan urutannya dalam rantai protein akan menentukan struktur tiga dimensi molekul protein yang terbentuk. Urutan asam amino dalam suatu rantai protein sangat penting menentukan fungsi protein tersebut. Dengan 20 macam asam amino yang berbeda, diperoleh jumlah dan urutan yang berbeda-beda sehingga dihasilkan protein-protein unik yang hampir tidak terbatas jumlahnya. Keragamn ini sangat menguntungkan mengingat berbagai ragam fungsi yang dilakukan oleh protein.
Semua organisme merupakan kumpulan dari sejumlah protein dan segala aktivitasnya. Fungsi protein tergantung pada struktur tiga dimensinya, yang pada gilirannya ditentukan oleh sekuen asam amino penyusun protein tersebut. Jadi, DNA menentukan karakteristik suatu organisme karena DNA menentukan sekuen asam amino dari semua protein pada suatu organisme.
DNA mengandung sandi genetik untuk tiap asam amino yang ditampilkan masing-masing dari sekuen tiga pasang basa. Ketiga basa (triplet) ini disebut kodon. Urutan kodon pada suatu sekuen DNA mencerminkan urutan asam amino yang akan dirakit menjadi suatu rantai protein. Satu bagian sekuen DNA lengkap yang mampu menentukan sekuen asam amino suatu protein atau molekul r RNA dan tRNA disebut gen, yaitu satuan hereditas yang didefinisikan oleh para ahli genetika klasik. Semua gen dan sekuen DNA yang dimiliki oleh suatu organisme disebut genom.


1. Sintesis Protein
Proses sintesis protein dari sandi genetik melibatkan beberapa langkah. DNA pada dasarnya adalah penyimpan informasi yang pasif, mirip denga cetak biru (blue print) untuk denah rumah. Aktivitas pembuatan protein terjadi pada suatu situs khusus dalam sel yang disebut ribosom. Oleh karena itu, langkah pertama dalam sintesis protein adalah menyampaikan informasi dari DNA ke ribossom. Untuk melakukan hal ini enzim-enzim seluler membuat salinan kopi gen sehinnga dapat dibaca oleh ribosom. Salinan kopi gen ini disebut RNA duta (messennger RNA = mRNA). mRNA membawa sandi genetik yang dipakai langsung untuk sintesis protein di ribosom. Tahap ini disebut dengan tahp transkripsi. Dalam tahap berikutnya kodon pada mRNA harus dapt dikorelasi dengan asam amino yang seharusnya. Tahapan ini dilakukan molekul RNA lain, yaitu RNA transfer, (transfer RNA = tRNA) yang dikenal dengan tahap translasi.  Akhirnya asam amino harus disambungkan untuk membentuk rantai protein fungsional (tahap sintesis). Ribosom yang terdiri dari RNA dan protein, melakukan fungsi tersebut. Bila rantai protein sudah lengkap, suatu tanda berhenti (stop sign) mempengaruhi ribosom sehingga ribosom melepas protein baru tersebut ke dalam sel.
  1. Transkripsi.
Transkripsi adalah sintesis RNA secara enzimatik dengan menggunakan DAN sebagai cetakan. Untuk transkripsi suatu gen, hanya salah satu rantai DNA yang digunakan sebagai cetakan atau templat. Transkripsi dikatalis oleh enzim RNA polimerase. Sintesis RNA selalu bergerak ke satu arah, yaitu dari ujung 5’ ke ujung 3’ dari molekul RNA.
Untuk menginisiasi transkripsi, RNA polimerase berikatan pada suatu daerah di DNA yang disebut promoter. Promoter terletak disebelah hulu (ke arah5’) dari gen. Perbedaan urutan nukleotida dari promoter berbagai gen menyebabkan perbedaan tingkat efisiensi dan regulasi dari inisiasi transkripsi gen-gen tersebut.
Setelah RNA polimerase terikat pada promoter DNA, kedua rantai DNA dipisahkan dan RNA polimerase memulai sintesis RNA di tempat inisiasi. Tempat ini disebut sebagai posisi +1. RNA polimerase menambahkan ribonukleotida ke ujung 3’dari rantai RNA yang sedang disintesis. Hal ini dilakukan dengan bergerak dari ujung 3’ ke arah 5’ dari rantai DNA cetakan., sambil memisahkan bagian rantai ganda DNA yang dilaluinya. Dengan demikian ribonukleotida dapat berpasangan dengan DNA cetakan dan ditambahkan pada ujung 3’ RNA dengan pembentukan ikatan fosfodiester. Heliks ganda akan terbentuk kembali setelah RNA polimerase lewat.














Promoter
 



b.Translasi.
Translasi merupakan proses sintesis protein di dalam sel. Sebelum sintesis protein dimulaio, setiap jenis tRNA berikatan dengan asam amino spesifik. Reaksi ini dikatalis oleh enzim aminoasil tRNA sintetase bersama dengan ATP, sehingga terbentuk aminoasil tRNA. Pada tRNA terdapat antikodon yang akan berpasangan dengan kodon yang terdapat pada mRNA. Setiap macam aminoasil tRNA sintetase akan menggabungkan asam amino tertentu pada tRNA yang spesifik. Pada tRNA inisiator, tRNA terikat pada asam amino metionin yang termodifikasi, yaitu N-formilinetionin. Proses sintesis protein terdiri dari tiga tahap yaitu:
  • Inisiasi             : proses penempatan ribosom pada suatu molekul mRNA
  • Elongasi          : proses penambahan asam amino
  • Terminasi         : proses pelepasan protein yang baru disintesis
Pada sintesis protein sel prokariot, prosaes inisiasi memerlukan sub unit kecil (30S) dan sub unit besar (50S) ribosom, mRNA, tiga faktor inisiasi (IF, IF dan IF) dan GTP. IF dan IF mula-mula terikat pada sub unit kecil ribosom, kemudian IF dan GTP bergabung. Kompleks sub unit kecil ini terikat pada mRNA di tempat pengikatan ribosom yang terletak 8 – 13 nukleotida sebelum hulu kodon inisiasi Aug kemudian bergerak sepanjang mRNA ke arah hilir sampai menemukan kodon inisiasi. Setelah pengikatan sub unit kecil ribosom pada kodon inisiasi, tRNA inisiator dapat terikat pada kodon inisiasi dan melepaaskan IF sehingga terbentuk kompleks inisiasi 30S, melepaskan IF, IF, GDP dan fosfat sehingga terbentuk inisiasi 70S.
Proses elongasi melibatkan tiga faktor elongasi (EF – Tu, EF – Ts, EF – G0, GTR, aminoasil tRNA dan kompleks inisiasi 70 S. Proses elongasi terdiri dari tiga tahap:
  • Aminoasil tRNA membentuk kompleks denagn EF-Tu dan GTP, terikat pada “A-site” di ribosom dengan melepaskan EF-Tu – GDP. EF-Tu – GTP dapat berubah lagi menjadi EF-Tu – GTP dengan bantuan EF-Ts dan GTP.
  • Enzim transferase peptidil yang terdapat pada ribosom membenyuk ikatan peptida antara dua asam amino yang berdampingan.
  • Enzim translokase (EF-G) dengan energi GTP menggerakkan ribosom sejauh satu kodon sepanjang mRNA sehingga tRNA pada “P-site” lepas dan tRNA pada “A-site” pindah ke “P-site”.
Proses elongasi rantai peptida berjalan terus sampai ribosom mencapai suatu kodon stop.
            Proses terminasi melibatkan tiga faktor pelepas (“release faktor”, RF, RF dan RF). RF atau RF dapat mengenal kodon stop dan denagn bantuan RF menyebabkan trasnsferase peptidil melepaskan rantai polipeptida dari tRNA. Faktor-faktor pelepas membantu pelepasan kedua sub unit ribosom dari mRNA.

2. Ciri-ciri Molekul Protein
Beberapa ciri utama molekul protein yaitu:
·         berat molekulnya besar, yang merupakan suatu makromolekul
·         umumnya terdiri dari 20 macam asam amino, yang membentuk suatu rantai polipeptida yang berikatan satu dengan yang lain. Ikatan peptida merupakan ikatan antara α-karboksil dari asam amino yang satu dengan gugus α-amino dari asam amino yang lainnya.
·         terdapatnya ikatan kimia yang lain yang menyebabkan terbentuknya lengkungan-lengkungan rantai polipeptida menjadi struktur tiga dimensi protein. Sebagai contoh misalnya ikatan hidrogen dan ikatan hidrofob.
·         strukturnya tidak stabil terhadap beberapa faktor seperti pH, radiasi, temperatur, dan sebagainya
·         umumnya reaktif dan sangat spesifik, yang disebabkan terdapatnya gugus samping yang reaktif dan susunan khas struktur makromolekulnya.. bberapa gugus samping yang biasa terdapat diantaranya gugus kation, anion, hidroksil aromati, hdroksil alifatik, amin, amida, tiol, dan gugus heterosiklik
3. Klasifikasi Asam Amino
Berdasarkan sifat kekutuban (polarity) gugus R, asam amino dibagi menjadi 4 golongan yaitu:
1.      asam amino dengan gugus R yang tak mengutub. Golongan ini terdiri dari 5 asam amino yang mengandung gugus R alifatik (alanin, lesin, isolesin, valin, dan prolin), 2 dengan R aromatik (fenilalanin dan triptofan), dan 1 mengandung atom sulfur (metionin).
2.      asam amino dengan gugus R mengutub tak bermuatan. Lebih mudah larut dalam air karena gugus R mengutub dapat membentuk ikatan hidrogen dengan molekul air. Kekutuban serin, treonin, dan tirosin disebabkan oleh gugus hdroksil, asparagin dan glutamin oleh gugus amida, dan sistein oleh gugus sulfhidril (-SH).
3.      asam amino dengn gugus R bermuatan negatif (asam amino asam). Golongan ini bermuatan negatif pada pH 6,0-7,0 dan terdiri dari asam aspartat dan asam glutamat yang masing-masing mempunyai dua gugus karboksil.
4.      asam amino dengan gugus r bermuatan positif (asam amino basa). Golongan asam amino ini bermuatan positif pada pH 7,0 yang terdiri dari lisin, arginin yang mengandung gugus basa lemah.

4. Sifat Asam Basa Asam Amino
Di dalam larutan netral asam amino selalu ada dalam bentuk ion berkutub (zwtterion) yang dapat ditunjukkan dengan konstanta elektrik dan momen dwikutub yang tinggi karena adanya pemisahan muatan positif dan negatif dalam bentuk ion berdwikutub.
Semua asam amino yang didapat barasal dari hidrolisis protein kecuali glisin, memiliki sifat aktif optik yaitu dapat memutar bidang polarisasi cahaya bila diperiksa dengan polarimeter. Reaksi khas asam amino disebabkan oleh adanya gugus α-karboksil, α-amino dan gugus yang terdapat pada rantai samping (R).

5. Struktur dan Sifat Peptida
Peptida mengandung 2,4 atau 4 asam amino, sehingga dapat disebut dipeptida, tripeptida, dst. Peptida didapatkan dari hidrolisis rantai panjang protein.  Peptida mempunyai pH isoelektrik. Reaksi kimia peptida disebabkan oleh adanya gugus ujung NH2 dan –COOH, dan gugus R yang dapat berionisasi.
Penamaan peptida didasarkan pada komponen asam aminonya. Urutan dimulai dar rantai N-ujung.   Uji peptida ini dapat dilakukan dengan uji buret, yaitu reaksi yang terjadi antara peptida atau protein dengan CuSO4 dan alkali,yang menghasilkan warna ungu.  Pemisahan atau analisis peptisa biasa dikerjakan dengan kromatografi penukar –ion atau elekrtroforesis kertas.

6. Analisis Asam Amino pada Peptida
Penentuan urutan asam amino dapat dlakukan dengan cara Hidrolisis sempurna. Hidrolisis dengan HCl 6N pada suhu 100 -120 celcius selama 10 - 24 jam memeberikan hasil terbaik, kecuali pada triptopan yang mengalami kerusakan pada suasana asam kuat, juga gugus amida pada glutamin dan asparagin akan pecah menghasilkan asam glutamat, asam aspartat, dan ion amoninum.
Banyaknya amonia pada hidrolisat dapat ditentukan untuk mengetahui kadar amida yang terdapat pada protein. Hidrolisis dengan alkali menyebabkan kerusakan pada sistein, sistin, serin dan treonin.
Penentuan urutan asam amino dalam Polipeptida didasarkan pada cara sanger untuk penentuan urutan asam amino dalam protein insulin yang bebas dari kontaminasi.
Cara bertingkat yang dilakukan sebagai  berikut:
1.      penentuan asam amino C-ujung dan asam amino N-ujung.
2.      pemutusan rantai plipeptida menjadi fragmen peptida dengan rantai yang lebih pendek  dengan enzim tripsin fragmen peptida. Kemudian fragmen tersebut dipisahkan satu dari yang lain dengan cara elektroforesis atau kromatografi. Tiap fragmen peptida dihidrolisis sempurna dan asam amino ditentukan.
3.      asam amino C-ujung dan asam amino N-ujung tiap fragmen peptida yang didapat dari no 2 ditentukan, sehingga urutan asam amino tiap fragmen peptida (dipeptida atau tripeptida) dapat ditentukan.
4.      fragmen peptida yang lebih panjang dari tripeptida, ditentukan urutan asam amino dengan cara edman, yaitu dengan pereaksi fenilisotisianat.
5.      diambil polipeptida asal dan pemotongan rantai menjadi fragmen diulangi lagi, tetapi dengan mempergunakan enzim lain, misalnya kimotripsin atau pepsin. Kimotripsin menghidrolisis ikatan peptida yang gugus karboksilnya berasal dari asam amino fenilalanin, triptofan atau tirosin. Pepsin menghidrolisis ikatan peptida yang gugus aminonya berasal dari  asam amino fenilalanin, triptofan, tirosin, lesin, asam aspartat, asam glutamat.
6.      Dibandingkan komposisi asam amino dan asam amino N-ujung serta C-ujung dari fragmen yang dihasilkan kedua cara hidrolisis tersebut, maka urutan yang benar sisa asam amino dalam polipeptida asal dapat ditentukan.

7. Organisasi struktur protein
Struktur tiga dimensi protein dapat dijelaskan dengan mempelajari tingkat organisasi struktur yaitu struktur primer, sekunder, tersier dan kuartener.
a. Struktur primer
Struktur primer protein ditentukan oleh ikatan kovalen antara residu asam amino yang berurutan yang membentuk ikatan peptida.Struktur primer dapat digambarkan sebagai rumus bangun yang biasa ditulis untuk senyawa organik.Untuk mengetahui struktur primer protein diperlukan cara penentuan bertingkat yaitu: 
1.Penentuan jumlah rantai polipeptida        yang berdiri sendiri dari protein
2.Pemutusan ikatan antara rantai polipeptida yang satu dengan lainnya.
3.Pemisahan masing-masing rantai polipeptida
4.Penentuan urutan asam amino dari masing-masing rantai polipeptida dengan cara sanger.   
b. Struktur sekunder
Struktur ini terjadi karena ikatan hidrogen antara atom O dari gugus karbonil (C=O) dengan atom H dari gugus amino (N-H) dalam satu rantai pilipeptida,memungkinkan terbentuknya konfirasi spiral yang disebut Struktur helix.Rantai paralel yang berkelok-kelok disebut konfirmasi –ß,rantai dihubung silangkan oleh ikatan hidrogen sehingga membentuk  suatu struktur yang disebut lembaran berlipat-lipat.Struktur polipeptida dalam protein serabut pada rambut dan wol berbentuk spiral yang berarah putar kekanan. Yang disebut dengan ð-helix,sedang yang berkelok-kelok disebut ß-kerotin.
c. Struktur tersier
  1. Struktur tersier terbentuk karena terjadinya perlipatan (folding) rantai ð-helix,konformasi ß,maupun gulungan rambang suatu polipeptida,membentuk protein glubular,yang struktur tiga dimensinya lebih rumit daripada protein serabut.
  2. Kemantapan struktur tersier suatu molekul protein selain disebabkan oleh ikatan kovalen seperti ikatan peptida dan ikatan disulfida juga oleh ikatan tak-kovalen yang menunjangnya yaitu yang menyebabkan terjadinya pelipatan tersebut.
d. Struktur kuartener
Sebagian besar protein berbentuk globular yang mempunyai berat molekul lebih dari 50 ribu merupakan suatu obligomer,yang terjadi dari beberapa rantai polipeptida yang terpisah yang disebut juga dengan protomer yang saling mengadakan interaksi membentuk struktur kuartener dari proteina obligomer tersebut.
E.     Metabolisme Lemak
Lemak atau lipid terdapat pada semua bagian tubuh manusia terutama pada bagian otak, mempunyai peran yang sangat penting dalam proses metabolisme secara umum. Sebagian lipid jaringan tersebar sebagai komponen utama membrane sel dan berperan mengatur jalannya metabolisme di dalam sel.
Beberapa peranan biologi yang penting dari lipid adalah sebagi berikut:
·         Komponen struktur membran
·         Lapisan pelindung paad beberapa jasad
·         Bentuk energi cadangan
·         Komponen permukaan sel yang berperan dalam proses interaksi antara sel dengan senyawa kimia di luar sel, seperti dalam proses kekebalan jaringan
·         Sebagai komponen dalam proses pengangkutan melalui membran.

1. Biosintesis Asam Lemak
            Biosintesis asam lemak sebagai bagian dari biosintesis lipida adalah suatu proses metabolisme yang penting dalam jasad hidup. Hal ini benar jika diingat jaringan hewan mempunyai kemampuan terbatas untuk menyimpan energi dalam bentuk karbohidrat. Dalam hal ini sebagian dari polisakarida dirombak melalui proses glikolisis  menjadi asetil ko-A, yang merupakan prazat untuk biosintesis asam lemak dan triasilgliserol. Senyawa lipid ini mempunyai kandungan energi yang lebih tinggi bila dibandingkan dengan karbohidrat dan dapat disimpan sebagai cadangan energi yang besar di dalam jaringan lemak. Di dalam tumbuhan, senyawa lipid disimpan sebagai cadangan energi yang cukup besar di dalam biji dan buah.
            Biosintesis asam lemak dari asetil ko-A terjadi di hampir semua bagian tubuh hewan, terutama di dalam jaringan hati, jaringan lemak dan kelenjar susu. Biosintesis ini berlangsung dalam sitoplasma, membutuhkan asam sitrat sebagai kofaktor dan membutuhkan CO sebagai factor pembantu dalam mekanisme pemanjangan rantai asam lemak, meskipun CO tidak tergabung ke dalam asam lemak tersebut.
           


2. Katabolisme Asam Lemak
            Asam lemak adalah suatu senyawa yang terdiri dari rantai panjang hidrokarbon dan gugus karboksilat yang terikat pada ujungnya. Asam lemak mempunyai dua peranan fisiologi yang penting. Pertama, sebagai satuan pembentuk fosfolipid dan glikolipid yang merupakan molekul amfipatik sebagai komponen mmbran biologi.


a. Oksidasi asam lemak: oksidasi beta.
Asam lemak mempunyai peran yang sangat penting sebagai sumber pembentuk energi dalam tumbuhan dan hewan. Sebagian besar dari padanya disimpan dalam bentuk senyawa trigliserida di dalam sel. Sebagian besar asam lemak bebas yang mengalami katabolisme berasal dari proses hidrolisis trigliserida oleh enzim lipase yang terdapat di dalam sel jaringan lemak. Asam lemak ini dikeluarkan dari sel, berikatan dengan serum albumin yang kemudian bersama aliran darah dibawa ke jaringan lainnya di dalam tubuh untuk selanjutnya mengalami oksidasi. Dalam hal ini asam lemak yang masuk ke jaringan lebih dulu dipergiat dengan perantaraan enzim di dalam sitoplasma, baru kemudian dapat dimasukkan ke dalam mitokondrion untuk selanjutnya mengalami proses oksidasi menghasilkan energi yang dipakai untuk segala kegiatan dalam tubuh yang memerlukan energi.

            Oksidasi sempurna asam lemak berantai panjang di dalam semua sel jaringan hewan mamalia, kecuali di dalam sel otak, menghasilkan CO dan HO sebagai hasil akhir. Dalam keadaan tertentu oksidasi asam lemak dalam sel otak menghasilkan asam β-hidroksibutirat. Kelincahan gerak, penyebaran, dan oksidasi asam lemak yang terjadi di dalam tubuh berlangsung secara terpadu dengan proses metabolisme karbohidrat dan diatur oleh sistem hormon endokrin yang rumit.